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Abstract.
In the life sciences, there is an ample need for semantic interoperability of data. Thus shared vocabularies are needed for

consistently expressing meta data in terms of semantic annotations as well asfor querying bibliographic information systems. In
the past years, lots of highly specialized, yet also fragmented terminologies have evolved. However, they lack principled forms
of conceptual interlinkage. In order to provide an ontological basis fora seamless integration of such isolated parts of biological
knowledge, we here introduce BIOTOP, an upper domain ontology for molecular biology. We describe its structure and contents,
as well as its current interfaces to a selected set of OBO ontologies, whichcontain more detailed terminological knowledge about
specific areas of molecular biology, e.g., cell types, molecular functions, biological processes, and chemical compounds.
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1. Biological Terminologies and Ontologies

Biological research and development activities continuously generate vast amounts of experimental data.
This data stream feeds model organism specific and cross-species databases for subsequent fact retrieval,
making data interoperability and integration a major topic. Human curators manuallyadd semantic meta
data to the experimental data in terms of, e.g., sequence annotation and functional annotation of genes and
gene products. Automatic means such as specific annotation editors guiding the annotation process [1]
and information extraction and text mining systems [2, 3, 4] increasingly support manual work. Immense
efforts have been made to set up ontologies and terminologies serving as metalanguages for the annotation
task (for a comprehensive survey, see [5]). Many of them are available within the OBO (Open Biomedical
Ontologies) library.1 The most prominent resource is the Gene Ontology (GO) [6] covering molecular
functions, biological processes, and cellular components.

The OBO ontologies, by and large, were built independently from each other, each dealing with a
specific subdomain of biomedicine (anatomy, cell types, molecular functions,biological processes, se-
quences, chemicals, etc.). Consequently, they lack any deeper form ofconceptual integration and inter-
linkage, though from a scientific perspective the domains they cover are heavily interconnected.

Various approaches have been proposed to detect and formally represent those implicit relations be-
tween ontologies to make them accessible for computational purposes. Amongst others, the composition-
ality of GO terms in particular has been investigated [7, 8, 9, 10] and was exploited to derive computation-
ally usable definitions [11, 12].These are certainly valuable integration efforts. However, we claim that
the validity and significance of their results critically depend on grounding thedomain ontologies on a
formally rigid ontological framework, a so-calledUpper Ontology.
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We further claim that a bridge between both, the formal top layer and domain-specific ontologies is
needed to guarantee a seamless transition from domain- and application-independent classes (also termed
as types, concepts, etc.) and relations in theUpper Ontologyto very specific classes in the domain ontolo-
gies. Such an intermediary layer is defined in terms of anUpper Domain Ontologycapturing character-
istic classes and relations of the respective domain. In this paper, we propose BIOTOP to serve as such a
mediating layer for the life sciences domain.

The careful integration of domain ontologies via a common ontological top layermight in particular
be beneficial for advanced forms of language technology applications such as text mining from full-texts
(rather than abstracts) in terms of semantic meta data-based relation and event extraction (see also Section
4).

1.1. Upper (Domain) Ontologies

An important step towards standardizing biomedical ontologies is due to Smithet al. [13] who developed
a Relation Ontology(RO) needed for the conceptual representation of the biomedical domain.The RO
contains consistent and unambiguous formal definitions for the basic relation types (currently up to ten,
though this number might still be subject to change in the future) on four major axes — generic taxo-
nomic and partonomic, spatial, derivational and participant relations. It is important to notice that all class-
relations provided by RO are defined dependent on relations among the corresponding instances. Further-
more their domain and range is clearly specified as continuants (entities which persist through time) or
occurrents (entities which develop over time, e.g. processes). A time parameter is included in the formal
definition of a relation, if necessary.

However, the authors admit that using the same relation types, even with high-level domain and range
restrictions, is not sufficient to guarantee interoperability. Hence, an additional common terminological
framework must be supplied which empowers a seamless transition from the generic classes continuant
and occurrent to other, still fundamental classes. These appear eitherat the domain-independent level
(Upper Ontology) or at the generic domain-dependent level (Upper Domain Ontology).

For the life sciences, alternative proposals forUpper Domain Ontologiesalready exist, though they
are still under development. The OBR framework (Ontology of Biomedical Reality) was introduced by
Rosseet al. [14] in order to integrate domain ontologies from anatomy, physiology and pathology. It
applies principles of the domain-independentUpper OntologyBFO to the field of biomedicine [15]. Alan
Rector’sSimple Bio Upper Ontology2 is composed of a class hierarchy and a relation type hierarchy.
It is intended to constrain the use of relation types to particular entity classes.GFO-BIO3 is another
Upper Domain Ontologyfor biology based on the top-level ontology GFO [16]. Rosse’s and Rector’s
conceptualizations, unlike GFO-BIO, have a marked focus on medical concept abstractions. We here
stipulate that such an approach is too narrow to account for the integrationof biomedical ontologies that
also cover bio-chemistry and molecular biology.

1.2. FromGENIA to BIOTOP

While the ontologies mentioned in the previous subsection have no particular application in mind besides
connecting fragmented domain ontologies, for natural language processing (NLP) applications such as
biomedical information extraction or text mining an ontologicalde factostandard has already been es-
tablished through the GENIA ontology.4 It forms the conceptual backbone for named entity annotations
in the GENIA corpus [17] and is currently augmented by relation annotations, as well. The underlying
ontology is, however, quite fragmentary and certainly not intended to serve as anUpper Domain Ontology
in the sense outlined above.

2http://www.cs.man.ac.uk/~rector/ontologies/simple-top-bio
3http://onto.eva.mpg.de/gfo-bio.html
4http://www-tsujii.is.s.u-tokyo.ac.jp/~genia/topics/Corpus/genia-ontology.html
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The GENIA ontology is a pure taxonomy composed of (only) 48 classes, informally described by ver-
bal ‘scope notes’. It covers biochemical substances, such asProtein Molecule, DNA Molecule, andNu-
cleotide, and their natural locations, e.g.,Multi-Cell Organism, Tissue, andCell Component. As pointed
out by Schulzet al. [18], there are major shortcomings with the GENIA ontology. Very briefly, many
classes are either poorly or not defined at all, most scope notes are incomplete, non-taxonomic relations
are missing, there is no commitment to any formalUpper Ontologywhich leads to a lack of ontological
structure, and, finally, the non-standard naming policy for many GENIA classes is rather confusing for
biologists.

In order to avoid these shortcomings but still preserve the results of previous work (corpus annotations,
in particular), we created the BIOTOP ontology, a major redesign and extension of GENIA intended as an
Upper Domain Ontology primarily for molecular biology and biomedicine.

2. A Brief Overview of BIOTOP

Our main goal in setting up BIOTOP is to provide an ontologically sound layer for linking and integrating
various specific domain ontologies from the life sciences domain. We stipulate inparticular, that integrated
and, thus, more comprehensive ontologies will enhance the capabilities of advanced NLP applications in
the life sciences such as information extraction and text mining.

With these considerations in mind, the structure of the original GENIA ontology was remodelled, some
GENIA classes were removed, new BIOTOP classes were introduced and even whole new axes were
added, significantly extending the scope of the original ontology. Insteadof reusing GENIA ’s top level
distinction betweenSource andSubstance, the general top level ontology BFO [15] was set on top of
BIOTOP. At the relational level, GENIA ’s exclusive use of a single taxonomic (is-a) relation was extended
by relation types from the RO. BIOTOP is presently composed of 175 classes, linked by 171 instances of
non-taxonomic binary relations taken from nine semantic relation types (including subrelations) and their
reciprocal relations (as of February 19, 2008).

2.1. BIOTOP Classes

BIOTOP inherits the top-level distinction of BFO between the classesContinuant andOccurrent and
further betweenIndependent Continuant andDependent Continuant, the latter depending on the exis-
tence of some independent continuant. (For example the function of a protein is a dependent continuant
since it cannot exist without a protein, which is an independent continuant.) However, the BFO subclasses
of Independent Continuant were not incorporated in BIOTOP, since by that BFO enforces a distinction
in terms of connection and wholeness. This, as a consequence, requires a commitment to a certain granu-
larity level which could lead to inconsistencies with the inherently cross-granular BIOTOP (see [19]). On
the other hand, distinctions missing in BFO were added, e.g. those betweenAction, State andProcess.

Initially, B IOTOP, like GENIA, focused on molecular entities. Thus major parts of BIOTOP are sub-
ordinated toIndependent ContinuantBFO. While the BIOTOP classesOrganism, Tissue, Cell, Cellu-
lar Component, andAtom correspond to classes in the GENIA Source branch, the subclasses ofMono
Molecular EntityBioTop correspond to the GENIA Substance branch.

However, BIOTOP gradually moved beyond the scope of GENIA providing a hierarchy of biological
processes subsumed byProcessBFO (a subclass ofOccurrentBFO), a hierarchy of biological functions
subsumed byFunctionBFO (a subclass ofDependent ContinuantBFO), as well as several qualities and
roles, such asPhysical Mass andCanonical State subsumed byQualityBFO, andSignalling Role sub-
sumed byRoleBFO.

Following design considerations of advanced knowledge representationlanguages such as OWL, the
Web Ontology Language[20], we want to support automatic terminological classification [21] as much
as possible. Hence, we introduced existential and universal restrictions in class definitions, in terms of
necessary, and, wherever possible, necessary and sufficient conditions. For example, the classNucleotide
is restricted by four necessary conditions:
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1. Nucleotide has-componentonly (Heterocyclic Base or Phosphate or Ribose)
2. Nucleotide has-componentexactly oneHeterocyclic Base
3. Nucleotide has-componentexactly oneRibose
4. Nucleotide has-componentsomePhosphate

2.2. BIOTOP Semantic Relation Types

BIOTOP has a taxonomic backbone based on the subsumption relationis-a which relates subclasses to
their parent classes. Additionally, it borrows semantic relation types from the RO, namelyproper-part-of,
located-in, derives-from, has-participant, and their reciprocal relations. The partonomic relationproper-
part-of (and its reciprocalhas-proper-part) is taken as transitive, non-reflexive, and asymmetric relation.

In addition to the RO, first the relationhas-inherence(and its reciprocalinheres-in) was introduced
to express the relation between physical objects and their inherent (biological) functions. Second, the
relationrealization-of(with its reciprocalhas-realization) is used to link the realization of a function to the
corresponding function. Third, two subrelation pairs ofhas-partwere introduced,viz has-grain/ grain-of
(according to [22]) andcomponent-of/ has-component. Both relations are not transitive.Has-grainallows
to define collectives as mass entities composed of their constituent singletons,such as populations of cells,
amounts of protein molecules, etc.Has-componentrelates compounds to their constituent components
based upon a non-overlapping and exhaustive partition, like a protein chain is related to its constituent
amino acid monomers. A collective remains the same when one adds or removes agrain (e.g. a population
of T-cells remains a population of T-cells when we remove a single T-cell). However, the sortal identity of
a compound changes as soon as a single component is added or removed (e.g., when we remove an amino
acid from the peptide chain of a protein this might change the over-all natureof the protein).

3. BIOTOP’s Interfaces to OBO Ontologies

As anUpper Domain Ontologyfor the biomedical field, BIOTOP contains foundational and uncontro-
versial statements about the basic kinds of molecular biology and biomedicine and provides classes as
interfaces to domain ontologies kept within the OBO framework. Using these classes to integrate different
domain ontologies, BIOTOP can be used as common top level for the OBO. As a side effect, we expect
the mapping of the OBO ontologies to BIOTOP classes to reveal hidden inaccuracies in the modelling
practice of the single OBO ontologies, such as the conflation of classificationaxes. In the following, we
suggest how the Gene Ontology (GO) [6], the Cell Ontology (CO) [23] and parts of the ChEBI ontology
[24], as exemplars for all OBO ontologies, could be integrated using BIOTOP as an interface. We propose
matches and subsumption relations between BIOTOP and OBO ontology classes that need to be adjusted
and confirmed by the respective ontology developers in subsequent revisions.

The Gene Ontology (GO) is composed of three independent branches which relate to BIOTOP in the
following way. TheMolecular FunctionGO branch is subsumed by the classMolecular FunctionBioTop

and theBiological ProcessGO branch is subsumed byBiological ProcessBioTop. The subsumption rela-
tions are due to the fact that, unlike BIOTOP, GO restricts the meaning of "molecule" to "gene product"
(which is a protein or RNA molecule), and restricts the biological process branch to processes in which
gene products are involved. For theCellular ComponentGO branch not the whole class hierarchy but
only large parts of it are subsumed byCellular ComponentBioTop. This is because cellular components
in BIOTOP are defined as proper parts of cells, whereasCellular ComponentGO also subsumes classes
going beyond the scope of this definition, such asExtracellular RegionGO andCellGO (which matches
CellBioTop).

The top node of the Cell Ontology (CO),CellCO, matchesCellBioTop. In addition, BIOTOP provides
links to several subclasses ofCellCO. If these links would be formally represented this would enrich the
formal semantics of the CO. For example, linkingEukaryotic CellCO to Eukaryotic CellBioTop, the CO
class and all its subclasses would inherit the necessary condition that theymust either be a eukaryotic
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organism (this applies, e.g., to yeast cells) or be the proper part of a eukaryotic organism (this applies, e.g.,
to animal cells), as specified in BIOTOP.

The ChEBI ontology coversChemical Entities of Biological Interest. Though the ChEBI classes are
named with plural noun forms, the accompanying textual definitions reveal that, in fact, the singular noun
form is meant. Disregarding the misleading names,Molecular EntitiesChEBI and all its subclasses are
subsumed by the union ofMono Molecular EntityBioTop with Poly Molecular EntityBioTop. In ad-
dition, some of the ChEBI classes match direclty BIOTOP classes, amongst themAtomsChEBI match-
ing AtomBioTop, Simple ProteinsChEBI corresponding toEntire Protein MoleculeBioTop, andNucleic
AcidsChEBI to Nucleic Acid MoleculeBioTop. The ChEBI branch starting withBiological RoleChEBI

needs deeper consideration covering classes that match subclasses ofMaterial EntityBioTop which are
either restricted by a role or a function specification. For example the classFoodChEBI would be defined
in BIOTOP as being equivalent to a subclass ofMaterial EntityBioTop that has the existential restriction
has-inherencesomeFood RoleBioTop.

4. Conclusion and Outlook

We demonstrated the need for an integration layer for biomedical ontologies.Considering this we intro-
duced BIOTOP as anUpper Domain Ontologywhose basic design was inspired by the GENIA ontology.
Since then, it has grown to cover all foundational entity types of the whole realm of the life sciences.
BIOTOP is intended as a bridge linking various domain-specific biomedical ontologies withthe top-layer
ontology BFO. Linking-up domain ontologies with BIOTOP is a complex task in itself, for which we have
already taken the first step. By now we mapped the fundamental classes ofthe domain ontologies GO,
CO, and ChEBI to BIOTOPclasses. An enormous effort is still needed to complete the task for all relevant
OBO ontologies. After its completion the OBO ontologies can comprehensively be used. This would al-
low for cross-ontology consistency checking, inferencing, and othervalue-adding inference services, vital
e.g., for proper reference resolution in biomedical documents. Hahnet al.[25] already showed the value of
proper taxonomic and partonomic reasoning for information extraction frombiomedical documents. Quite
recently, Poprat and Hahn [26] provided preliminary empirical evidencefor the hypothesis that the use of
composite, high-coverage terminological resources (such as the UMLS5 or the NCI Thesaurus [27]) is far
more advantageous for various forms of reference resolution than the use of heavily focused stand-alone
ontologies (such as e.g., the Cell Ontology).

Solid experimental evidence that shows whether the BIOTOP redesign of is really better suited for e.g.,
corpus annotation and information extraction than the original GENIA source is still lacking. By now there
is evidence that semantic annotation of scientific documents profits from basing the annotation vocabulary
on a formally sound ontology such as BIOTOP [28]. To preserve the compatibility of future annotations
based on BIOTOP with existing annotations from the GENIA corpus, BIOTOP contains, as an additional
feature, mappings to GENIA classes.

BIOTOP is implemented in OWL-DL [20]. The ontology is under continuous developmentand the
current version can be downloaded fromhttp://www.purl.org/biotop. A discussion group has
been established to debate topics relating to the theoretical background andimplementation issues of
BIOTOP (cf. http://groups.google.com/group/biotop).
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